
1

A Systematic Framework for Modernizing Legacy
Application Systems

Timothy C. Fanelli1,2, Scott C. Simons3, and Sean Banerjee1

1Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY, USA
{tfanelli, sbanerje} @clarkson.edu

2ZBL Services, Inc. - tfanelli@zblservices.com
3IBM, z Systems Workload Modernization, Poughkeepsie, NY, USA - scsimons@us.ibm.com

Abstract—Researchers estimate that 180 � 200 billion lines
of legacy code are still in use today. Legacy application system
modernization is driven by an organization’s desire to remain
agile to changes, reduce operating costs and gain a clearer
understanding of their application system infrastructure. In this
paper we present a systematic modernization framework for
legacy systems. Our framework considers the application code,
information system and infrastructure as distinct entities which
can be modernized independently. As a result, our approach can
be applied sequentially to a single program module, or in parallel
across multiple program modules. We validate our framework
through an industrial case study involving a large, multinational
financial services institution. Our case study results show that
through modernization the organization reduced its cost to the
sponsoring users by 80%, lines of code by 89%, operational
complexity by 99%, and achieved an estimated 66% reduction
in the man-hours required for time to market using the new
application functions.

I. INTRODUCTION

A legacy application system is defined as a system com-
prised of outdated software and / or hardware. However,
software and hardware aging are not the only drivers for
systems turning legacy. The loss of the system development
team, increase in code complexity, and inherited and commis-
sioned systems are some of the other reasons why systems
turn legacy [1, 2]. Despite the challenges of operating legacy
systems, they are also often perceived as business critical,
proven and reliable due to their long operational history [3,
4]. Researchers estimate that 180�200 billion lines of legacy
code are still in use today [3, 4]. A recent survey conducted
on 26 industrial practitioners revealed that almost half of their
legacy application systems were written in COBOL [3, 4].

The desire to modernize legacy systems is driven by organi-
zations wanting to remain agile to changes, reduce operating
cost and obtain a clearer understanding of their system in-
frastructure [2, 5]. Modernization is also often necessitated
by a skills shortage in legacy systems [6]. Successful mod-
ernization enables an organization to embrace modern devel-
opment paradigms, reduce the time to market, obtain code
clarity by removing redundancies, increase code confidence
and quality [3, 4]. However, the time and cost associated
with modernization, fear of data loss, lack of knowledge
of the legacy system, difficulty in extracting business logic,
predicting return on investment of the modernization process

and internal resistance to change can quickly stall attempts at
modernization [3, 4, 7, 8, 9].

In this paper we present a systematic framework for mod-
ernizing legacy application systems. Our framework is novel as
it considers the application code, the information system, and
the infrastructure as distinct entities which may be modernized
independently. Our framework has been validated through an
industrial case study involving a large, multinational financial
services institution. The institution has over 40, 000 employees
and over USD $2 trillion in assets under management.

Our contributions are as follows:
1) A systematic framework for modernizing legacy appli-

cation systems
2) An industrial case study using a financial services in-

stitution to validate the feasibility of the modernization
approach

3) A baseline industrial case study using a wireless com-
munication service provider to demonstrate how subject
matter experts drive our modernization strategies

The rest of the paper is organized as follows: In Section
II, we summarize the related work in modernization and
the limitations of existing approaches. In Section III, we
define our systematic modernization framework. In Section
IV, we validate our approach through a case study on a large,
multinational, financial services institution. In section V we
explore the limitations of our approach. We conclude the paper
in Section VI by providing directions for future research.

II. RELATED WORK

Legacy modernization techniques are broadly categorized as
either: big bang, database first, database last or hybrid [10].
The big bang approach performs a complete redevelopment of
the legacy system using modern software, database and hard-
ware systems. The database first approach migrates user data to
modern database management systems, thereby allowing users
immediate access to the data. However, this approach requires
both the legacy and target system to remain operational and
interoperable through gateways [11]. Data inconsistency issues
makes this approach infeasible in mission critical systems.

These approaches are either undertaken as a black box or as
a white box methodology [12]. Black box methods are often
based on wrapping, to expose modern interfaces around legacy

2

program modules [12, 13]. Black box wrapping approaches are
often taken as they allow rapid integration and reuse of legacy
program modules. By contrast, white box approaches require
subject matter expertise of the legacy program modules and
precede more in depth re-engineering of the solution [12].

The above approaches are only applicable to fully decom-
posable systems. In reality, legacy application systems are
seldom fully decomposable. In [14] the authors propose a
general set of migration rules. The approach analyzes the
legacy system and identifies portions that contain essential
data and business logic. The target, modernized, system is
developed as a standalone system, however it is unclear how
and when the transition from the legacy to the target system
should occur. The DARWIN system [15] provides incremental
approaches for migrating decomposable, semi-decomposable
and non-decomposable systems. The incremental approach
ensures any failures in the migration process can be recovered
by reapplying the methodologies only on the failed step.

The RENAISSANCE approach [16, 17] allows the user to
re-engineer a system as opposed to completely replacing it. A
user choosing to re-engineer the system will select one of four
options: revamp the existing interfaces, restructure the internal
system without affecting the external interfaces, rearchitecture
the system by migrating to a modern hardware framework, or
redesign by incorporating some artifacts of the legacy system.
The Butterfly approach [5], [18] also requires both the legacy
and transformed system to remain operable during migration,
however interoperability is not required, thus eliminating the
complexity of gateways. The Butterfly approach focuses on
data migration, which creates complexities in the migration
process and introduces unnecessary delays.

Limitations of Existing Approaches:
Current modernization approaches consider the legacy system
as an atomic candidate for modernization, containing an in-
formation system, applications layer, and a hardware platform.
This all encompassing view of modernization involves not just
the design and implementation of the application code, but also
data migration and infrastructure changes as well [19]. These
big bang approaches are too risky to apply to any business
critical system. Incremental methodologies, such as DARWIN,
attempt to mitigate these risks, but still incur significant
architectural complexities and integration challenges [5, 10,
11, 15].

In database-first approaches, data architecture and migra-
tion is addressed before application and interface design.
An organization’s solution portfolio often consists of many
legacy application systems which rely on the same data. This
increases the cost, time, and risk involved in existing iterative
frameworks as persistence gateways must be incorporated into
each application sharing the data within the portfolio [5, 11].

Black box wrapping approaches neglect the underlying
implementation of the program modules, and are inappropriate
for software systems under ongoing maintenance, or for which
an information system or platform migration is desired.

Post-
Processing

Processing
Pre-

Processing

Application Insights Improve Modifiability

Business Logic
Extraction

Developer Operations Data Orchestration

Infrastructure MigrationWorkload
Transformation

Refactoring

Fig. 1. A systematic framework for legacy program module modernization

III. MODERNIZATION FRAMEWORK

A. Overview

Our modernization framework provides a phased approach
to modernization which is either applied sequentially to any
one program module, or in parallel across multiple program
modules, comprising the overall software system. Our frame-
work is novel as it considers the application code, the infor-
mation system, and the infrastructure as distinct entities which
are modernized independently; and places strong emphasis
on the use of appropriate subject matter expertise. We focus
specifically on the incremental transformation of the applica-
tion system, and leave the hardware and information system
changes as subsequent, simplified tasks. In its modernized
state, the user has regained knowledge about the design and
implementation of the application system, increased the agility
of implementation, adopted known and well understood design
patterns, and improved the code quality.

The modernization approach described is applicable to
any structured, procedural language implementation, such as
COBOL, PL/I and Assembler. The target language of mod-
ernization is any object-oriented language, such as Java, C#,
or C++.

The framework consists of three phases: Pre-Processing,
Processing and Post-Processing as shown in Figure 1.

B. Pre-Processing

The Pre-Processing phase consists of two optional steps:
Application Insights and Improve Modifiability. These steps
are designed to prepare the program modules for transforma-
tion. During Pre-Processing, the existing subject matter experts
and sponsoring users of the legacy application are critical to
the quality of the output, which drives the Processing phase.

1) Application Insights: Application insights is the appli-
cation of code and system analytics to gain insight into the re-
quirements, design, and implementation of the legacy software
system. In our industrial case study, a legacy application was

3

identified in production that was last compiled in 1986. That
application had not been in active maintenance or development
for over 25 years. Much of the original knowledge about the
application has been lost, both through attrition of the devel-
opment staff responsible for it, and through data loss events
associated with lack of digitized and formal requirements
tracking systems. Application insights allows the organization
to rebuild some of the lost domain knowledge about the system
under investigation.

2) Improving Modifiability: The purpose of this step is to
identify and separate business and program logic from data
orchestration. Within the legacy application, non-destructive
edits are made to identify source code artifacts which map
to business requirements. This facilitates Business Logic Ex-
traction during the Processing phase, and allows the legacy
application subject matter experts to build in depth expertise
about the business requirements.

3) Outcomes: Pre-Processing produces two outcomes.
First, we have recreated, or augmented, supporting require-
ments and design artifacts of the existing legacy application.
Second, the subject matter experts, in working closely with
sponsoring users, have acquired additional expertise in the
business requirements of the application.

Both these outcomes are critical to the success of the Pro-
cessing phase. The requirements and design artifacts are used
to drive Business Logic Extraction. Furthermore, the legacy
application system subject matter experts become advisers
to the design and implementation team responsible for the
modernized application.

C. Processing

During the Processing phase, we address both the imple-
mentation of, and development culture governing, the program
modules within the application system. Often, the subject
matter experts responsible for the legacy application system
are less experienced in the target language or platform of mod-
ernization. The success of the modernization effort, therefore,
relies on the availability of target subject matter experts who
will take over the design, implementation, and maintenance
of the modernized application. In our industrial case study we
demonstrate how subject matter experts drive modernization
strategies.

1) Business Logic Extraction: The first step in the language
transformation is the extraction of business logic from program
modules. Business Logic Extraction is best performed at
a requirements or functional specification level, rather than
method by method within the program modules. However, this
is often idealistic and difficult to accomplish, particularly when
Pre-Processing is incomplete or omitted.

We focus this step strictly on the business logic contained
within a program module, rather than program flow or data
access code. In doing so, we enable increased reuse of the
business logic implementation [20]. During development, we
require the adoption of test-driven development methodology,
beginning a cultural shift within the development organization
necessary to the success of adopting developer operations in
this phase.

Fig. 2. Structure of a solution portfolio after modernization of one or more
legacy application systems

Business logic in the legacy application is replaced by an
invocation to the extracted business logic. This replacement
simplifies what remains of the legacy application system,
enables black box testing against the extracted business logic,
and provides a continuous integration of the modernized asset.

2) Developer Operations: During business logic extraction,
we require the adoption of a test-driven development method-
ology. In addition to increased code confidence [21], this also
begins a cultural shift within the organization to adopt agile
development and project management methodologies. Devel-
oper operations increases the productivity of development,
decreases time to market for change, and results in more
accurate project estimates and projections over time [3].

3) Data Orchestration: With the business logic successfully
extracted from the legacy program module implementation, the
primary responsibility of what remains in the original source
is program and record orchestration: the input-output logic,
record augmentation, and data validation routines that prepare
the data for processing.

Test-driven development is also required during this step of
the transformation, for reasons discussed earlier.

4) Refactoring: The final step in transformation involves
refactoring the new program implementation to adopt known
design patterns, best practices, and style guidelines resulting in
increased readability and maintenance, and simplified design
of the program.

Refactoring the design of an application is a normal part
of maintenance to increase reusability of the modernized
application. This is particularly true when the Processing
phase when the legacy program’s subject matter experts have
a high degree of influence over the design of the target
implementation. This often results in non-standard coding
styles and the introduction of procedural workflow structures
into object-oriented language environments.

5) Outcomes: As shown in Figure 2 after modernization
of a legacy application, a solution portfolio now consists of
both legacy application systems, and modernized application
systems, which can rely on the same underlying data. The

4

modern application system is fully decomposable, simplifying
its on-going maintainability and reuse.

The subject matter experts responsible for the legacy pro-
gram module now hand off ownership of the modernized
program module to the new team for ongoing maintenance.
Having served as advisers during Processing, they gain insight
and experience into the modernization process. These subject
matter experts are now available to continue the modernization
effort on other program modules or application systems within
the solution portfolio.

D. Post-Processing

The Post-Processing phase comprises of any future end-
state for broader transformation beyond the application itself,
including information systems and hardware infrastructure.
Infrastructure Migration and Workload Transformation are
shown as two very common examples, in which workload
is migrated to on- or off-premises cloud infrastructures, or
consumed in online transaction processing workloads rather
than batch.

IV. CASE STUDY

Our framework is validated through industrial case study
involving a multi-national financial services firm, with 40, 000
employees, and over $2 trillion USD in assets under manage-
ment. In this section, we will discuss the organization’s reasons
for modernization, including their business value drivers, and
provide an overview of their results.

A. Background

The organization’s infrastructure cost is directly correlated
to their utilization metrics. Peak utilization is measured over
a 4 hour rolling average, and determines the licensed capacity
of the infrastructure. This cost is recovered from sponsoring
users at a fixed rate of C1. C1 represents the dollar amount
per CPU service unit. A service unit is assumed to be a CPU
second for simplicity.

The infrastructure vendor incentivizes adoption of Java
by omitting the Java Virtual Machine from the measured
utilization. This incentive allows the organization to bill spon-
soring users a lower rate for Java applications: C2 which is
approximately C1

8 , providing strong financial drivers to fund
modernization efforts.

The organization also faces a skillset shortage associ-
ated with COBOL development talent, legacy development
paradigms, and an outdated development toolchain. Developer
operations, agile development methodologies, modern devel-
opment environments, and continuous delivery pipelines are
further value drivers for modernization of legacy application
systems. Several prior modernization efforts utilizing our
baseline approach failed to demonstrate financial incentive for
funding future initiatives.

Fig. 3. Utilization measurements and cost of a modernized application system,
comparing use of only legacy subject matter experts (wireless telecommuni-
cation provider) with use of legacy subject matter experts as advisers to target

B. Application Overview

The legacy application is a high volume, low latency,
transactional batch workload that executes daily, processing
business data generated during normal business. The orga-
nization uses this system internally, and in a software as a
service model (SaaS) to other financial intuitions. A copy,
modify, deploy pattern had been used to on board service
customers, resulting in unmanageable maintenance overhead.
The application system had grown to contain over 900, 000
lines of COBOL code, comprising 850 program modules
orchestrated by approximately 5000 individual batch jobs. It
takes the organization between 4 and 6 months to on-board a
new service consumer. This model limited the organizations
ability to scale the solution with the growth of the business, as
maintenance and operational complexity increased with each
new service consumer.

C. Baseline Predictions

To baseline our approach, we performed a prior case study
with a wireless telecommunication provider supporting over
130 million subscribers. In this modernization approach we
applied a pure big-bang whitebox approach to a single ap-
plication system within a solution portfolio, and relied only
on the legacy application subject matter experts. The legacy
application system was developed in COBOL and the target
system in Java. Following modernization, as shown in 3, the
cost per service unit of the application reduced from 100⇤C1,
to 139.6⇤ C1

8 +44.2⇤C1, or 61.65⇤C1. While modernization
provided cost savings to the sponsoring users, it also increased
the total system utilization to 83.8%, causing concerns for the
infrastructure management team. One of the key reasons for
the increased utilization was the legacy application develop-
ers were unfamiliar with the target language and introduced
overhead into the transformed application that could have been
avoided with sufficient expertise in the target environment.

These baseline results are consistent with prior efforts within
the organization in which only legacy subject matter experts
participated in the modernization project.

5

D. Results

By applying our framework for modernization and utilizing
legacy subject matter experts as advisers to target subject
matter experts during solution design, the organization was
able to achieve far better results than our baseline. As shown
in Figure 3, the total system utilization of the modernized
application systems remained the same, and the cost per
service unit reduced from 100.0 ⇤ C1 to 21.25 ⇤ C1.

The simplicity of the application was also greatly increased.
The target implementation contains 88% fewer lines of code. It
is estimated that there is a 66% reduction in the time required
for on-boarding new service consumers1.

The solution portfolio contains native vendor applications
which are ineligible for modernization to the target environ-
ment. After modernization, we achieved a 99% reduction in
the operational complexity of the solution with approximately
50 batch jobs.

V. THREATS TO VALIDITY

In this section we discuss the limitations and threats to
validity of our modernization framework.
Human Factor: Resistance to modernization, or “putting
yourself out of work”, is a prevalent concern, as echoed by
the authors in [3] and [4]. In our approach, legacy system de-
velopers provide their perspectives during the Pre-Processing
Application Insights phase, becoming advisers to the target
subject matter experts. Thus, assuaging fears associated with
job obsolescence due to modernization.
Return on Investment: Return on investment (ROI) is often
used by management as the driving factor to justify funding
legacy system modernization. Many aspects of modernization
are purely technical decisions, such as language choice, mid-
dleware platforms and developer operations. In organizations
where technology is funded by the line of business, such as
in our case study, it is difficult to justify ROI without clear
value added to the sponsoring users. Our framework directly
addresses this by demonstrating cost savings to the sponsoring
user. Specific targets of modernization, such as business rules
management systems, will also provide enhanced capability to
the sponsoring user, contributing to near term ROI.
Case Study Validity: Our modernization framework was
validated using an industrial case study from a large financial
services institution. It can be argued that the case study does
not encompass the breadth of organizations using legacy sys-
tems. The case study was chosen as the organization operates
in a high availability environment where loss of service results
in significant financial losses. The organization it required
seamless modernization to ensure its customer base was not
impacted by the changes. Moreover, the legacy code spanned
over 30 years of continued use and is representative of typical
legacy systems.

VI. CONCLUSIONS AND FUTURE WORK

The results of our industrial case study, on a large, multina-
tional financial services institution, validates the applicability

1Determined via informal survey of the application architect and develop-
ment team. Formal statistics were not readily available.

of our approach in modernizing legacy systems. Our approach
of emphasizing the existing human resources and knowledge
allowed us to reduce the charges to the sponsoring users
by 80%, the total lines of code by 88%, the operational
complexity by 99% and provided a 66% reduction in the man-
hours required for onboarding new customers.

Our future work will expand on the Post-Processing step
of infrastructure migration, specifically migrating to cloud
infrastructures. We will also investigate the impact of tooling
and developer operations on the productivity of workforce
candidates beginning their professional careers. Finally, we
will validate the drivers for modernization through survey of
industrial practitioners.

REFERENCES

[1] T Sucharov and P Rice. “The burden of legacy”. In: Online:
http://www.ncc.co.uk/article (2005).

[2] GR Gangadharan et al. “IT Innovation Squeeze: Propositions and
a Methodology for Deciding to Continue or Decommission Legacy
Systems”. In: Grand Successes and Failures in IT. Public and Private
Sectors. Springer, 2013, pp. 481–494.

[3] Belfrit Batlajery et al. “Industrial perception of legacy software system
and their modernization”. In: Technical Report Series UU-CS-2014-
004 (2014).

[4] Ravi Khadka et al. “How do professionals perceive legacy systems and
software modernization?” In: Proceedings of the 36th International
Conference on Software Engineering. ACM. 2014, pp. 36–47.

[5] Jesús Bisbal et al. “Legacy information systems: Issues and direc-
tions”. In: IEEE software 5 (1999), pp. 103–111.

[6] K. Lewotsky. “The Pieces Are Falling Into Place”. In: IBM Systems
Magazine Digital Edition July (2015).

[7] Keith Bennett. “Legacy systems: coping with stress”. In: Software,
IEEE 12.1 (1995), pp. 19–23.

[8] Belfrit Victor. “Revisiting legacy systems and legacy modernization
from the industrial perspective”. In: (2013).

[9] T Rodden et al. “Social viewpoints on legacy systems”. In: Systems
Engineering for Business Process Change (2000), pp. 151–163.

[10] Jesús Bisbal et al. “A survey of research into legacy system migra-
tion”. In: Technique report (1997).

[11] Michael L Brodie and Michael Stonebraker. Migrating legacy sys-
tems: gateways, interfaces & the incremental approach. Morgan
Kaufmann Publishers Inc., 1995.

[12] Santiago Comella-Dorda et al. “A survey of black-box modern-
ization approaches for information systems”. In: Software Mainte-
nance, 2000. Proceedings. International Conference on. IEEE. 2000,
pp. 173–183.

[13] Nelson H Weiderman et al. Approaches to Legacy System Evolution.
Tech. rep. DTIC Document, 1997.

[14] Narsim Ganti and William Brayman. The transition of legacy systems
to a distributed architecture. Wiley-QED Publishing, 1995.

[15] Michael L Brodie and Michael Stonebraker. “DARWIN: On the
incremental migration of legacy information systems”. In: Distributed
Object Computing Group, Technical Report TR-0222-10-92-165, GTE
Labs Inc (1993).

[16] Jane Ransom, I Somerville, and Ian Warren. “A method for assessing
legacy systems for evolution”. In: Software Maintenance and Reengi-
neering, 1998. Proceedings of the Second Euromicro Conference on.
IEEE. 1998, pp. 128–134.

[17] Ian Warren. The renaissance of legacy systems: method support for
software-system evolution. Springer Science & Business Media, 2012.

[18] Bing Wu et al. “The butterfly methodology: A gateway-free approach
for migrating legacy information systems”. In: Engineering of Com-
plex Computer Systems, 1997. Proceedings., Third IEEE International
Conference on. IEEE. 1997, pp. 200–205.

[19] Santiago Comella-Dorda et al. A survey of legacy system moderniza-
tion approaches. Tech. rep. DTIC Document, 2000.

[20] William M Ulrich. Legacy systems: transformation strategies. Prentice
Hall Englewood Cliffs, 2002.

[21] Boby George and Laurie Williams. “An initial investigation of test
driven development in industry”. In: Proceedings of the 2003 ACM

symposium on Applied computing. ACM. 2003, pp. 1135–1139.

